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SUMMARY

Results of theoretical and numerical investigations conducted to develop economical
computing procedures have been applied to an existing computer program (see NASA CR-
2543) that predicts unsteady aerodynamic loadings caused by leading and trailing edge
control surface motions in subsonic compressible flow. Large reductions in computing costs
are achieved by removing the spanwise singularity of the downwash integrand and evaluating

_its effect separately in closed form. Additional reductions are obtained by modifying the
incremental pressure term that accounts for downwash singularities at control surface edges.
Accuracy of theoretical predictions of unsteady loading at high reduced frequencies is
increased by applying new pressure expressions that exactly satisfy the high frequency
boundary conditions of an oscillating control surface. Comparative computer results
indicate that the revised procedures provide more accurate predictions of unsteady loadings
as well as providing reductions of 50 to 80 percent in computer usage costs.

INTRODUCTION

Theoretical and numerical investigations have been conducted to identify a means of
reducing computer usage costs for application of the subsonic kernel function and downwash
collocation process described in NASA CR-2543 for predicting unsteady aerodynamic
loadings caused by leading and trailing edge control surface motions in subsonic
compressible flow. It was determined that the program provided accurate predictions of
unsteady loadings for the sample cases described in NASA CR-2543. However, computer
usage costs severely limited its usefulness for general application in engineering analysis.

The computer program of NASA CR-2543 was developed with accuracy and ease of usage as
primary requirements. The numerical approach that was employed provided the most
accurate evaluation of the downwash discontinuity around the edges of the control surfaces
and did not restrict the user in locating downwash stations in the near vicinity of the control
surface edges.

The method employed for downwash evaluation in the vicinity of the control surface edges
was to integrate the singularity of the spanwise integrand by numerical quadrature.
Although this technique provides excellent downwash evaluations, it was found to be very
costly, in that 40% of the downwash calculation time was involved in evaluating this small
portion of the spanwise integrand that encloses the downwash station.

The present report describes an alternative method used to evaluate the singularity in the
spanwise integrand. Use of this alternative method will introduce discontinuities in the
calculated downwashes along the hinge line of the control surface. However, the region
where the approximate downwashes differ from the correct values is restricted to a very
small region near the hinge line. This should not cause any user apprehension concerning
the validity of the solutions, provided that downwash collocation stations are not placed
within the restricted regions.



Other techniques employed to reduce the computer usage costs consist of: 1) limiting the
extent to which the control surface pressure terms are distributed over the planform,

2) reformulating a new integration algorithm to minimize the number of integration
stations on the surface, and 3) reconstructing new pressure modification functions to
reduce the waviness in residual downwashes.

The present work represents an extension of the analytical methods developed in reference 1
to provide a capability for predicting unsteady aerodynamic loadings caused by control
surface motions that are both accurate and economical to use. The computer program is
described in NASA CR-145354.



ABBREVIATIONS AND SYMBOLS

All quantities are dimensionless except as noted.

b Length Local semichord
bg Length Reference length
c Local chord length nondimensional with respect to by
E, Chordwise pressure modification function
f(n) Spanwise distribution function of lifting pressure
g(&,n) Chordwise distribution function of lifting pressure
i VAR
K(x,&,y,m) Kernel function
wb
k Reduced frequency = ~
M Mach number of free stream
Py Force/area Perturbation pressure on lower surface
P, Force/area Perturbation pressure on upper surface
AP Force/area Pressure difference, Pg - P, (positive upward)
APJ- (Force/area)/unit qj Surface pressure difference in mode j
Q; Generalized coordinate amplitude for mode j
R Vg P vg
S Nondimensional semispan, S/bO
t Time
\% Length/time Free stream velocity
lVV— Kinematic angle of attack or nondimensional normalwash
W —‘-\‘;— |
Wj Wj/qj e1(...>t
X,¥,Z Cartesian coordinates, nondimensional with respect to £
X9 x coordinate of the leading edge
Xt x coordinate of the trailing edge

XQ x-§



Ah Radian

AQ Radian

£
£,1,§
©py(n) Radian

P Mass/length?
T Time

w 1/time

x coordinate of hinge line at side edge of control surface

x coordinate of planform leading edge at side of control surface
y~n

y coordinate of control surface side edge

Surface deflection

VI-M?

Lifting pressure coefficient (Py - P )/(Y20 Vv2?)

Sweep angle of the control surface hinge line, positive swept back
Sweep angle of leading edge, positive swept back on right-hand
side

¢ coordinate of hinge line at span station i

Dummy variables for (x, y, z)

Rotation angle of control surface hinge line at (n), measured in
the plane perpendicular to the y-axis and positive trailing edge
down

Density of the fluid
Nondimensional time

Circular frequency of oscillation



ANALYTICAL AND NUMERICAL PROCEDURES

AREAS OF INVESTIGATION

This report describes the procedures used to reduce computer usage costs involved in
calculating unsteady aerodynamic loadings caused by control surface motions in subsonic
flow. The procedures are applicable to planform configurations having full span or multiple
‘partial span control surfaces with arbitrary spanwise location.

The analysis coordinate system is defined in figure 1 for a typical leading edge and /or
trailing edge control surface configuration.

Figure 1.—Analysis Coordinate System

Analytical and numerical investigations have been conducted to evaluate the computational
efficiency of the procedures used in the computer program described in NASA CR-2543.



Various areas of investigation that have led to changes in the structure of the original
program are as follows:

1) Revison of the spanwise integration procedure for downwash calculation. The spanwise
integrand contains a logarithmic singularity at the downwash station. It has been
determined that the method formerly used for evaluation of the singular term required
a very large portion of the overall computation time.

Computational procedures have been revised so that the singular term is integrated
separately, outside of the numerical quadrature process.

Use of this alternate procedure will impose some restrictions on the placement of
collocation stations in the near vicinity of the hinge line. However, it appears that this
limitation will not severely hamper user applications. Accurate predictions of unsteady
loadings may be obtained, provided the downwash collocation stations are not placed
within the restricted regions.

2) Reductions in computer usage are achieved by revising the distribution of lifting
pressures due to downwash discontinuities. In the original formulation, the pressure
terms that were developed to satisfy the control surface boundary conditions were
extended over the entire lifting surface, regardless of the magnitude of the pressures
at large distances from the control surfaces. Pressures developed for motions of a
control surface on the right-hand wing were extended to the left-hand wing and rolled
off to zero to satisfy the boundary con'dition at the left-hand wingtip.

The discontinuity related pressures have been found to be very small at moderate
distances from the control surfaces. Consequently, the spanwise loading distributions
have been modified by deleting the small loadings that do not contribute to solution

accuracy.

3) Further reductions in usage costs are achieved by developing a suitable algorithm to
minimize the number of integration stations necessary to provide downwash
calculations within specified accuracy limits.

Stringent requirements are imposed on the integration algorithm so that any large
variations of the spanwise integrand are accurately accounted for in the analysis of
planforms with arbitrary aspect ratio and taper ratio.




4)

5)

Cost reductions are also achieved by reducing the waviness of the residual downwashes

so that only a small number of collocation stations are required to obtain accurate

predictions of unsteady loadings for small span control surface configurations. Numerical
investigations have indicated that accurate loading predictions require an increasing number of
collocation stations to be distributed over the lifting surface in the chordwise direction

as the chordwise length of the control surface tends to zero. Program modifications

have been made to allow cost effective analyses of configurations having extremely

small control surface chord lengths.

New pressure expressions that exactly satisfy the boundary conditions on a control
surface oscillating at high frequency in high Mach number flow conditions have been
developed and incorporated within the program. Derivation of new pressure
expressions that are not frequency limited are presented in Appendix A and Appendix
B.

Each of the above described items of interest is discussed in detail in the following sections.



MODIFICATION OF THE SPANWISE INTEGRATION TECHNIQUE

The downwash integral equation formulated within NASA CR-2543 is given as follows:

s xt
"(3)- /4/-35-“2 f<">[fs(t:m)[l<(x.g.y,n) +K(x,8,y,m]dg
s X singular non-sing.
L

X

+(yEn)2 f(yzlg(E’Y)exP("ik(x‘i))dﬁ -E—E%’y!—)]dn
X

2

X
+ W [2 £ (YJS(E,y)exp(—ik(x-E))di + yG' (x,y,y)} (1
g
where
£f(n) is the spanwise variation of the pressure function
g(&,n) is the chordwise variation of the pressure function
K(x,§,y,n) represents the kernel function
G'(x,Y,¥) is the spanwise derivative of the chordwise integral evaluated at the

downwash station

This form of the downwash equation has two singularities removed from the integrand such
that the improper integrals, due to the dipole terms of the kernel function, are easily
evaluated. However, the integrand contains an additional singularity that requires
application of special integration techniques necessary to provide accurate downwash
calculations.



An example of the singularity characteristic that exists at the downwash station is shown in
figure 2 that presents a plot of an example of the spanwise integrand of equation (1).

Downwash
station \ n/s
60. F \o
¢
40. L
¢
Chordwise
integral
20. |-
0
T N\J
1 i i J
-1 -.5 0. 5 1

n/S

Figure 2,—Spanwise Variation of Integrand of Equation (1)

In NASA CR-2543, contribution of this singularity to the downwash is evaluated by

applying suitable integration quadrature functions to a localized region around the downwash
station. However, spacing requirements for spanwise integration stations in the very near
vicinity of the downwash station impose severe accuracy restrictions on chordwise
integrations.

Numerical investigations indicate that up to 40% of the computation time is consumed in
applying this integration technique to evaluate the contribution of this singularity to the
downwash.
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Significant reductions in computer usage costs are achieved by reducing the number of
spanwise integration stations required to evaluate the integrand in the near vicinity of the
downwash station. Cost reductions result from changing the mathematical form of the
integrand. The analytical expression describing the singularity and its strength is subtracted
from the integrand and its downwash contribution is evaluated outside of the downwash
integral. The analytical form of the singularity is obtained from downwash evaluations
involving the singular part of the kernel function. Terms of the kernel function that
contribute to the singularity expression are designated as the dipole term, the inverse square
root term, and the logarithmic term as indicated in the following integral expressions.

S X
t -1 - (x-§)
=N Z_nZ [ap (g, Thxo| =1 (1.+ dgdn )
I.l S ﬂ[ (E n)e l:(y_n)z \/(x_g)2+62(y_n)2
-S
S dipole term

s X
t e .k
I =N z—nz'/‘AP(E,n)e 1k (x=8) = dgdn 3)
: SS . Vix-£)2+82(y-n)?
- %

inverse square root term

s X
t .
I, =f\/sz-n2/AP (£,m)e Lk (x-8) (—k{)log [\/(x—&) 2482 (y-n) 2-(x-£)]d€dn 4)

’s X,
logarithmic term

The chordwise integrals are evaluated by forming a Taylor series expansion of
AP(§,y)e -ik (x~£) about the downwash station and inserting the expansion into the

above integrals. The Taylor series expansion is given as:

i -ik(x-§)
AP(E.Y)e-lk(x-g)EAP(x,y)+(g-x) i[AP(E.y)e ]

£=x

(5-x)2 22[ar(g,y)e TE(x-8)]
+ 2 S5

: + e (5)
=x




Insertion of equation (5) into equation (2) and performing the chordwise integration yields
an expression for the spanwise integration given as:

*recrular t
_reg erms] an  (6)

X3 (y-n)?

: -ik(x~-§)
—s '

E=x

The singularity due to the inverse square root term is-obtained in a similar fashion that yields

'S

I, = ikf,éz_nz [—AP(x,y)log(Bz(y-n)z) +*regular terms] dn 7

-S

The spanwise singularity contained in the third integral may be identified by redefining the
logarithmic kernel function for values of £ < x as being

log [\/(x-a) 2482 (y-n) —(x-£>]= logB2(y-n) 2—log[\/<x—&:> 2482 (y-n) 2+ x—a} (8)

and inserting this into equation (4) provides the following singular expression

s X
2 g _ x
13=—-%—/\,32—n2 [1og(82(y-n>2>fAP<x.y)e PGBl gg 4 f;‘gg;gr] dn (9
s xl

The singularities are combined and subtracted out of the spanwise integrand and evaluated
in closed form outside of the integral. The combined singularity strength is given as

y)

2 -ik(x-§)
T(x,y) = 87_ 9 AP(% e '

- ikAP (x,
E=x i X,y) (10)
X

-%E/AP(E.Y)e_ik(x—g)dg
*2

;

* regular terms are nonsingular functions

I



Thus the singularity strength to be subtracted from the integrand is

'\/sz-nz T(x,y)log [62 (y-n) 2]

The closed form evaluation of this singularity using Mangler’s technique of reference 4 is
then given as

s
2 2 2
fsz—nz T(x,y)logB?(y-n)2dn = 1TT(X.>')[8710g (%§) - < +y2] (11)
-S

The modified form of the downwash integral takes the final form given as follows:

’/‘\’ [ﬁP(E n)[K(x ’y'n)+ K(X’E:Y9n)]d£

singular non-sing.
X2

y=-n

X
+ 2/AP(€:}’)exP(-ik(x-E))dE—G_—_—'(x’y’)')
(y=-m) A

)
-T(x,y)logsz(y-n)Z] dn

X
+ 7 [ZfAP(E,y)exp(-ik(x—E))dE + 36 (x,y,¥)

X
£
2 2
+T(x,y)[— 1og(’?)-%+yz} ] (12)
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Numerical evaluation of the spanwise integrand of equation (12) is shown in figure 3 for the
same analysis case of figure 2. The singularity is no longer present at the downwash station
and the integrand in the vicinity of the downwash station can be easily evaluated using
integration quadratures having only a small number of integration stations within this
localized zone.

Downwash n/S
¢ station

4_0. = \
Mo
20. —
Chordwise

integral

-20. -

-40. -

-1 -.5 0. .5 1.

Spanwise coordinate 17/S

Figure 3.—Spanwise Variation of Integrand Defined in Equation (12)

This modification of the spanwise integrand has a significant effect in reducing the
computing costs. However, this reduction in cost imposes restraints on the placement of
collocation stations in the near vicinity of pressure discontinuities.

13
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Figure 4 represents the chordwise downwash distribution for a configuration having a 20%
chord control surface and applying the integration technique of evaluating the spanwise
integral using suitable integration quadrature procedures. (See equation (1))

Hinge line
® = Calculated points
1.5 -
Downwash
1.0 —
A=1

5 -
- L 4 -~ —— -0 —-‘L
| { 1 | | l 1 !
.76 .78 .80 .82 .84

Chordwise coordinate x/c

Figure 4.—Chordwise Downwash Distribution Obtained by Applying Method of
Equation (1) (Singularities Evaluated by Appropriate Quadratures)

The downwash is smooth on either side of the hinge line and the discontinuity value across
the hinge line matches the required discontinuity for unit rotation of the control surface.
Use of this integration method does not impose any restriction on the placement of
collocation stations in the near vicinity of the hinge line.

However, a restriction is required for the placement of collocation stations in the near
vicinity of the hinge line when using the singularity subtraction procedure of equation (12).
A downwash distribution obtained by using the integration method based on equation (12)
is shown in figure 5.



Singularities appear at the hinge line coupled with some downwash waviness in the
distributions over a small region away from the hinge line. The singularity at the hinge line
is due to the inability of the Taylor series to properly represent the pressure function that
contains a logarithmic singularity at the hinge line.

Hinge ¢tine

20

Downwash
1.6 o

1.0 -

001C —==y fr—

.76 .78 .80 .82 .84

Chordwise coordinate x/c

Figure 5. -Downwash Distribution Obtained Using Method of Equation (12)
(Singularity Removed and Evaluated Separately)

It is recommended that the collocation stations are placed no closer to the hinge line than
three-fourths of 1 percent local chord.

A spacing restriction is also recommended for the placement of collocation stations in the
near vicinity of the leading edge when the procedure of equation (12) is used to evaluate the
downwash distributions.
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Downwash distribution of figure 6 indicates that the calculated downwashes become singular
at the leading edge and that waviness in the distribution extends for a distance of 1% percent
of the local chord aft of the leading edge.

Leading $ edge
16.

1

—— t=—.003C

Calculated 000000 -

downwash 15. b

4.

% 1 } | 1 ! 1

0 0.1 0.2 0.3
Chordwise coordinate x/c

Figure 6.— A Calculated Downwash Distribution Near Leading
Edge Using the Singularity Procedure of Equation (12)

Therefore, it is recommended that the downwash collocation stations are separated from the
leading edge by a distance equal to or greater than 1% percent of local chord.

Imposition of restrictions on the placement of collocation stations in the near vicinity of
pressure singularities should not severely hamper user applications. Accurate predictions of
unsteady loadings may be obtained provided that the collocation stations are not distributed
within the above mentioned restriction regions.



REVISION OF SPANWISE LOADING FUNCTIONS

The solution process developed to obtain unsteady loadings over a lifting surface with
discontinuous downwash distributions is initiated by developing a pressure distribution
inducing downwash discontinuities that are identical with those contained in the kinematic
downwash distribution. This downwash distribution is then subtracted from the kinematic
downwash to provide a residual distribution that is smooth and continuous, for which the
corresponding pressure distribution may be obtained by standard collocation procedures.

The key to this solution process is the development of pressure expressions that will exactly
match the discontinuities in boundary conditions (downwash) along the edges of the control
surface.

Pressure expressions that satisfy this requirement are presented in Appendix A and Appendix
B for the leading and trailing edge control surface configurations, respectively. These
pressure expressions are valid within localized regions of the discontinuities, but have not
been matched with the planform edge boundary conditions. However, in prior work
reported in reference 1, the pressure expressions defined for the discontinuous downwash
regions have been extended to the limits of the planform. Boundary conditions were
satisfied exactly by requiring the pressures to go to zero in proportion to the square root of
the distance from the planform edges. For example, the pressure expressions developed for
motions of a control surface located on the right-hand side of the planform are extended to
the edges of the planform (including the left-hand planform region) and are then multiplied
by other modifying functions such that the pressure is forced to zero in proportion to the
square root of the distance from all the planform side edges.

Results of recent investigations indicate that this manner of extending the discontinuity
pressures over the entire planform is a significant factor in requiring large computer times
for application of the program of reference 1. Subsequent investigations have revealed that
the spanwise and chordwise pressure distributions induced by downwash discontinuities
are very localized to the regions of the discontinuities. Calculation of the downwash
discontinuities depends only on the local pressure gradients and not on the overall level of
the pressure distribution at large distances away from the discontinuities. Therefore, the
calculation time may be reduced by defining the pressure expression only over localized
regions of the planform.

A representative example, demonstrating that the discontinuity pressure expressions
contain only localized gradients near the control surface side edges, may be obtained by

17
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examining plots of the discontinuity pressure expressions. Figure 7 represents the sample
planform having a control surface, displaying a single spanwise ray where the pressures have
been calculated at the indicated circles due to motions of the right-hand side control
surface. Figures 8 and 9 show the spanwise variations of in-phase (real) and out-of-phase
(imaginary) parts, respectively, of the discontinuity related pressure function.

0., 0.
n/S
\
7,.25

9,0. 9,.5

™ 1,1
X/s \

14,1,

Figure 7.—Analysis Planform Used to Evaluate Pressure Variation

12.

AP

{Real) 8.
4.
0.

Inboard Outboard
edge edge

-.25 0. 25. .5 .75 1.

Spanwise coordinate /S

Figure 8.—In-Phase Part of Pressure Distribution



Inboard Outboard
edge edge
2. |-
AP -
{lmag) .75 1.
0 7 W i I
Yo O~O—0
-.25 0. act e
o 6°
-1 QA o
o Wl

Spanwise coordinate 11/S

Figure 9.—Qut-of-Phase Part of Pressure Distribution

Pressure distributions shown in figures 8 and 9 contain steep gradients near the control
surface side edges and diminish to small and almost constant values at relatively small
distantes from the side edges.

It should be noted further that the pressures tend to become constant along chordwise
stations located at relatively small distances away from the control surface side edges. This
characteristic of having slightly varying chordwise distributions of pressure coupled with

very small spanwise gradients, has the effect of raising or lowering the overall level of the
discontinuity related pressure distribution, but does not contribute to the generation of the
discontinuities required in downwash. Consequently, the spanwise pressure modification
functions have been modified so that the pressures inboard of the control surface are

reduced smoothly to zero beyond a relatively small distance from the inboard side edge. The
function is constant over the length of the control surface to maintain the singularity strengths
of the pressure distribution. The spanwise modification function at stations outboard of the
control surface retains the original square root roll-off characteristics that were contained in
the original development. The roll-off function inboard of the control surface has the
characteristics of maintaining second derivative continuity at the end limits of the interval to
ensure downwash continuity across the end stations of the interval. The length of the roll-off
interval has been selected on the basis of minimizing undesirable fluctuations of downwash
caused by the spanwise gradient of the roll-off function.

MODIFICATION OF SPANWISE INTEGRATION ALGORITHM

The integration algorithm developed for the computer program described in NASA CR-2543
has been modified to provide increased accuracy and more efficient computational
integration procedures in predicting unsteady loadings due to control surface motion.

An integration algorithm has been developed for analysis of a basic lifting surface with

various combinations of leading edge and/or trailing edge control surfaces. Control surfaces
may be located anywhere along the leading or trailing edges.

19
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Descriptions of the integration procedures are presented in the following subsections.

BASIC LIFTING SURFACE ALGORITHM

The procedure applied in developing a cost effective integration algorithm consists of
subdividing the total spanwise integration interval (extending from the left-hand wingtip to
the right-hand wingtip) into subintervals having end points at local maxima of the integrand
of equation (12) and at discontinuities of the integrand, with a minimum number of
internal stations in each subinterval to meet a specified accuracy requirement.

This obviously requires a positive identification of all peak values and discontinuities of the
integrand.

Locations of peak values and discontinuities of the integrand are dependent upon sweep
angle, aspect ratio, taper ratio, Mach number, reduced frequency, number of downwash
chords and the chordwise distribution of downwash stations.

Typical spanwise integrands, following chordwise integration, are shown in figure 10 and
figure 11 for a highly swept planform. These variations result from a combination of the first

chordwise pressure mode (defined as \/(xt - x)/(x - xg)) and ninth spanwise pressure mode
(defined as sin(17 cos™ (-n/s))) for M = .9, k = 1.0, and a downwash station located at

y/s=0.10.

Downwash station

(y/s=0.1)
40.
Chordwise
integral w €
20. +
Offset
0.
& ® = Calculated values
-20. . . , !
-1. -5 0. 5 1.

n/s - Spanwise coordinate

Figure 10.— Real Part of Integrand of a Swept Planform Analysis at M =.9, k = 1.



Downwash station
(y/s=0.1)
40. |+
&
Chordwise ¢
integral
20.
Offset
€
0. |
@ = Calculated values
-20. —1 L 1 -
~1. -5 0. .5 1.

n/s - Spanwise coordinate

Figure 11.—Imaginary Part of Integrand of a Swept Planform Analysis at M =.9,k = 1.
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The integrand plots of figure 10 and figure 11 exhibit a slope discontinuity at the planform
centerline. Also a peak value occurs just outboard of the downwash station, and the
integrand sometimes exhibits an oscillatory character in the vicinity of the downwash

station.

The oscillatory character integrand is apparent in figure 12, which is derived from the same
parameters just identified with the exception that the downwash station is located far away
from the planform centerline. The distribution shown in figure 12 also exhibits a slope
discontinuity at the centerline, a high gradient loading outboard of the downwash chord,
and an oscillatory character in regions adjoining the downwash station.

— Downwash station —

675 (y/s = 0.8)
® = Calculated values
40.
%
Chordwise ¢
integral
20.
.185
Offset
0. - 1 1 1 g Ri
-1. -.5 0. .5 1.

n/s - Spanwise coordinate

Figure 12.— Real Part of Integrand of a Swept Planform
Analysis Having a Downwash Station at y/s = 0.8
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The slope discontinuity in loadings at the planform centerline is due to the discontinuities
in direction of the leading and trailing edges at the planform centerline.

The oscillatory character of the spanwise integrand is due to the waviness of the spanwise
pressure mode. The particular spanwise pressure mode used in these analyses is the highest
order mode that would be retained in an analysis with nine downwash chords.

The ninth spanwise pressure term is given by
AP(n) = sin (2N-1)8 = sin 176 (N=9)

where 8 = cos '(-n/s)

The comparison of the ninth spanwise pressure mode plot, shown in figure 13 with the
results of figure 12, indicates that there is a one-to-one correspondence between peak values
of the integrand plot and of the pressure distribution.

1.0 j

Sin[17 cos™ (-n/s)]

-1.0
-1.0

mn/s - Spanwise coordinate

Figure 13.—Distribution of Ninth Spanwise Pressure Mode
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The only datum remaining to be identified (prior to subdividing the integration interval) is
the loading station offset from the downwash station shown in figure 10.

Cause of the high gradient loadings at stations outboard of the downwash station may be
traced to the combined effects of planform sweep and kernel function characteristics.

The particular term of the kernel function associated with high gradient loadings is the
dipole term, defined as

Rip™ — ! 1+ x-£
(y-n)?2 V(x-£)2+82 (y-n) 2

where

x = -chordwise coordinate of the downwash station
y = spanwise coordinate of the downwash station
¢ = chordwise coordinate of the pressure station

n = spanwise coordinate of the pressure station
2= 1-M?

M = Mach number

For simplicity, the term is omitted in the following discussion.

it N
(y-n)?

The simplified expression for the downwash integrand takes the form

te

-£
I, = [Ap(g,n) [1+ x :'dE
dw ; -"(x_g)z_’_BZ(y_n)Z
e

Wherein AP(&, ) is the assumed pressure loading function described in terms of planform
coordinates having zero values ahead of the leading edge and finite values on the planform.

The kernel function is described in cartesian coordinates and exists over the infinite plane
z=0.



For high Mach number cases, the simplified form of the kernel function has a value that is
slightly less than 2.0 for stations ahead of the downwash station and a value slightly greater
than zero for stations downstream of the downwash station.

Thus, the integrand of the chordwise integral (formed by the product of the pressure loading
and kernel function) is relatively large for regions ahead of x and much smaller for regions
downstream of x. For swept planforms, the large loadings of the chordwise integrand is
confined to that portion of the planform ahead of x and extending spanwise to the
intersection of the leading edge. Chordwise integrand loadings take on very small values at
spaﬁwise stations located outboard of the leading edge intersection. Thus, the integrand

of the spanwise downwash integral has rapid change in value in the near vicinity of the
leading edge, where the leading edge is intersected by the x-coordinate line through the
downwash station.

The station of rapid loading change is near the leading edge, but not exactly on the leading
edge, except for those cases where the shortened form of the kernel function becomes

x-§ =
de-[l'i- ’-ﬁ,] for n =y

An example of the spanwise integrand variation for a swept planform in steady flow is
presented in figure 14. The downwash station is located at 10% of the chord length aft of
the leading edge and has a spanwise coordinate of y/s = 0.40. The chordwise pressure mode
is defined as \/(xt -x)/(x - Xg), and a spanwise pressure mode is defined as V1 - (n/s)?
with M = .9, and k= 0.0.

Initial inspection suggests that the first derivative of the spanwise integrand may have a
discontinuity just outboard of the downwash station. However, an enlargement, shown in
figure 15, indicates that the curve is smooth and continuous. Further investigations indicate
that the distribution becomes more rounded as the downwash station is moved further aft
of the leading edge. A plot of locations of the maximum values of the downwash integrand
is shown in figure 16 for downwash stations located on the y/s = 0.4 downwash chord.
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Figure 14.—Distribution of Spanwise Integrand in Steady Flow at M =.9
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Figure 16.—Location of Maximum Integrand Values for a Downwash Chord at y/s = .40

Results of numerical investigatons indicate that the offset distance is not affected by
variations in reduced frequency but is Mach-number dependent in accordance with the

relationship

1.19 Hz
1+82 1-0+-03(1—.ﬁ)

where all offsets are referenced to the offsets obtained for the case of M = .9.
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Graphically obtained offset distance definitions requiréd for the arbitrary sweep angle case
are provided in figure 17.

X—XQ

Tan AQ

Figure 17.—Offset Distance Definition as Function of Sweep Angle

Offset distances applicable to configurations having leading edge sweep angles equal to or
greater than Ag = tan™! (.5) are given by

1.19 M2
Az (x_xz)/{[1+87‘] [1.+.03<1—.—8—I)][.86786(tanAl—l L)+1 .30]}

Offset distance for configurations having sweep angles less than Ag < tan~! (.5) is given by
2
A =(x-x )/{[1 . 19][1.+.03 (1- M )]
L 7 \[1+82 .81

2 3
*[.4tanhg—6tan A +4tan Az][.86786]}




Offset distances for downwash stations located in the near vicinity of a swept trailing edge
are obtined from the leading edge offset definitions by replacing Xg by X4 and tan AQ by
tan A,.

t

Once the stations of peak loadings and loading discontinuities have been identified, the total
integration interval is subdivided into subintervals with end points located at the critical
loading stations. Checks are made to ensure that no more than one inflection point is
contained in any subinterval to obtain sufficient accuracy with low order integration
quadrature formulas.

Results of numerical investigations indicate that the downwash integrand becomes
increasingly oscillatory and more difficult to integrate as the location of the downwash
station approaches the region near the intersection of the trailing edge with the planform
centerline.

Figure 18 represents a plot of the integrand obtained for a downwash station located near
the trailing edge at a spanwise station of y/s = .0826 for M = 0.90 and k = 2.5.

'-— Downwash station  —
6.5 (y/s = .0826)
Calculated .
values
55 I N
*s 0., 0. h
45 |
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integral . {y
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»
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15 ﬂ . 1.5
I/ ey * * - L
o :-::::-. wal .'-. - 1.8, 1.
5} ..C ..:,.:~. ..:g::*..
-
LT .: :: :: e,
-5 ] 1 ] ] 1 a4 ) ] 1 J
-1.0 -.6 -2 .2 6 1.0

n/s - Spanwise coordinate

Figure 18. —Spanwise Integrand for a Downwash Station Located Near Trailing Edge in
Midspan Region for M =.9, k=25
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An estimation of the maximum error that results for this highly swept configuration is
obtained by comparing a set of precise downwash calculations with values obtained from

the present integration algorithm.

The set of ‘precise’ downwash calculations is obtained by subdividing the total integration
interval into many subintervals and applying a high order quadrature rule in each subinterval.
Results of the ‘precise’ integration are presented in table 1, representing a column of the
downwash matrix having nine spanwise and six chordwise pressure terms. The 108 entries

in table 1 are listed in the order
(LD (D) (1,2)p (1,2)) (13 (13) (LA, (14)
(1,9 (1,5 (1,6 (1,6) (1,7 (1,7 (1,8), (1,8)]

1.9 (1,9 @Dg Q1) ——— o

(6.8); (6.8) (6.9 (6.9),

wherein (m,n),, (m,n), represent the real and imaginary downwash components associated

with the m’th chordwise and the n’th spanwise pressure modes.
Table 2 represents downwash values obtained by the present integration algorithm.

Differences between corresponding entries in the two tables provide a measure of the
maximum error in downwash calculation that is to be expected in the analysis of highly
swept planforms for high subsonic Mach numbers and large values of k.

It is to be noted that the present integration algorithm allows any combination of spanwise
and chordwise pressure terms to be used provided that the product of numbers of spanwise
and chordwise terms does not exceed 72, and the number of chordwise terms does not

exceed 8.



Table 1.—-High Precision Downwash Matrix Obtained for the Configuration of Figure 18

1.024E+01
-2.405E+00
-1.078E+01
1.952E+00
1.181E+01
-5.623E+00
-3.980E+00
3.530E+00
-3.035E+00
2.285E+00
1.492E+00
-3.738E-01
1.943E+00
8.231E-01

---IMAG~--~
-4.138E+00
-7.108E+00
-5.992E+00

3.122E+00
~-4.490E+00
-9.313E+00

4.648E+00
-1.062E+01
-7.246E+00
-6.466E+00
-6.139E+00
-3.237E+00
~4.336E+00
-1.841E+00

-8.222E+00
5.410E+00
4.742E+00

-4,722E+00

-1.321E+01
5.255E+00
4.025E+00

-2.334E400
4.736E+00

-2,227E+00

-1.046E+00

-2.178E+00

-1.776E+00

-3.780E-01

~=~IMAG-~~

4.805E+00
.823E+00
.470E+00
.899E-01
.717E400
.042E+00
.251E+00
.020E+01
.785E+00
.445E+00
5.789E+00
5.159E+00
3.840E+00
1.009E+00

AN IRAWNRND

~~=REAL---
4.851E+00
~7.930E+00
-3.304E+00
7.333E400
-5.823E+00
-4.724E+00
~4,373E+00
7.093E-01
-6.131E+00
2.088E+00
5.565E-01
2.136E+00
1.541E+00

~--IMAG---
-5.846E+00
-6.237E+00

6.708E+00
-1.924£+00
-1.307E+01
-2.331E+00

9.147E+00
-9.509E400
-4.319E+00
-6.413E+00
-5.224E+00
-5.025E+00
-3.259E+00

---REAL~---
-1.079E+00
9.834E+00
8.681E-01
-9.750E+00
5.785E+00
4,239E+00
-4.164E+00
1.160E+00
7.126E+00
-1.842E+00
~6.592E-02
-2.056E+00
-1.215E+00

with M = .9, k = 2.5 (Nine Spanwise and Six Chordwise Pressure Terms)

-=--IMAG---
.755E+00
.850E+00
.234E+00
.802E+00
.175E+401
.371E+00
.080E+01
.516E+00
.074E+00
6.331E+00
4.383E+00
4.748E+00
2.593E+00

WO R WOTOTO

Table 2.—Downwash Matrix Obtained by Present Integration Algorithm for the
Configuration of Figure 18 with M =.9, k = 2.5 (Nine Spanwise and Six
Chordwise Pressure Terms)

1.024E+01
-2.417E+00
-1.080E+01
1.952E+00
1.181E+01
-5.613E+00
-3.967E+00
3.540E+00
-3.032E+00
2.291E+00
1.482E+00
-3.886E-01
1.930E+00
8.158E-01

-4.150E+00
-7.104E+00
-5.982E+00

3.142E+00
-4.472E+00
-9.311E+00

4.644E+00
-1.064E+01
-7.259E+00
-6.479E+00
-6.146E+00
-3.237E+00
-4.327E+00
-1.833E+00

~--REAL--~
-8.221E+00
5.403E+00
4.741E+00
-4.735E400
-1.323E+01
5.253E+00
4.029E+00
-2.328E+00
4.749E+00
-2.216E+00
-1.040E+00
-2.170E+00
-1.783E+00
-3.892E-01

---IMAG---
4.790E+00
6.810E+00

~7.484E+00

-5.877E-01
3.725E+00
6.062E+00

~7.234E+00
1.021E+01
5.786E+00
6.436E+00
5.779E+00
5.151E+00
3.833E+00
1.007E+00

4.862E+00
-7.915E+00
-3.300E+00
7.329E+00
-5.822E+00
-4.737E+00
~4.392E+00
7.054E-01
-6.132E+00
2.095E+00
5.670E-~01
2.151E+00
1.549E+00

~5.845E+00
-6.245E+00

6.694E+00
-1.936E+00
~-1.308E+01
-2.332E+00

9.153E+00
-9.492E+00
~4,305E+00
-6.408E+00
~5.220E+00
~5.031E+00
~3.266E+00

-1.078E+00
9.841E+00
8.781t-01

-9.736E+00
5.789E+00
4.238E+00

-4.163E+00
1.146E+00
7.110E+00

-1.853E+00

-7.037E-02

-2.054E+00

-1.208E+00

---IMAG--~
6.774E+00
5.866E+00

-5.234E+00
3.794E+00
1.174E+01

-1.383E+00
1.079E+01
8.516E+00
3.077E+00
6.347E+00
4.395E+00
4.749E+00
2.600E+00
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ALGORITHM FOR CONFIGURATIONS WITH CONTROL SURFACES

The algorithms for configurations with control surfaces have been constructed to provide
accurate predictions of unsteady loadings for control surfaces of arbitrary size and location

along the leading and/or trailing edges.

Extensive use has been made of field plots to define the locations of peak loadings or
loading discontinuities in spanwise plots of the downwash integrand (equation (12)).
Field plots of critical loading locations are developed from plots of the integrand for a
mesh of downwash stations distributed over the planform.

The planform is divided into zones (figure 19) wherein the integrand plots have similar
characteristics for all downwash stations in the zone.

Inboard
side-edge

N

Hinge line
extension

Qutboard
side-edge

Midchord

NN

Root

Figure 19.—Subdivision of Planform into Zones Having Similar Downwash Integrand
Characteristics
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Spanwise locations of critical loading stations for a specific zone are superimposed on the
sketch of the planform. Stations with similar characteristics are joined by line segments to
form a curve to denote the manner in which the critical loading locations vary over the

surface of the planform.

A typical field plot of critical loading stations developed for downwash stations located
inboard and aft of the control surface is shown in figure 20, wherein the outline of the
planform and control surface is denoted by solid lines and the critical loading stations are
denoted by dashed line segments.

Near leading edge

Near trailing edge y; +.974¢
Downwash
station
v, +.3350¢

Inboard side-edge

Figure 20.—Field Plot of Critical Loading Locations for a Downwash Zone that is Inboard
and Aft of the Control Surface

33



34

The end points of the spanwise integration subintervals were determined from the
intersection of the x coordinate (of the downwash station) with the critical loading
locations as indicated by the square symbols in figure 20.

Field plots of the critical loading stations were developed in a similar manner for the
remaining zones, and the process was repeated for several variations in the spanwise locations
of the control surface to ensure that all critical loading stations have been adequately
identified.

Field plot results of various swept planform investigations were combined to define interval
subdivision required to satisfy accuracy criteria for an arbitrarily shaped control surface
configuration.

A final check was performed to ensure that the spanwise waviness of the downwash
integrand, in any interval, is compatible with accuracy for the order of integration
polynomial being assigned to that length of interval.



REVISION OF THE CHORDWISE PRESSURE MODIFICATION FUNCTION

Cost reductions may be achieved by reducing waviness of residual downwashes so that only
a small number of collocation stations’are required to obtain accurate predictions of
unsteady loadings for small span control surface configurations.

Analysis results of small percent chord control surface configurations indicate that the
number of collocation stations available may be insufficient to obtain converged solutions

when applying the method of NASA CR-2543.

Numerical analyses have been conducted to check solution convergence of small percent
chord control surface configurations shown in figure 21, composed of a 20% chord aileron
and a 6% chord tab.

Dimensions are in meters

1.041

Figure 21.—Analysis Planform Used to Check Solution Convergence of Small Chord
Control Surface Configurations
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Figure 22 represents the chordwise pressure distribution obtained for a fixed rotation of the
20% chord aileron. The predicted pressure distribution contains a chordwise waviness that
is not realistic when compared with experimental data. The pressure distribution near the
hinge line appears to have the proper smoothness. However, there is an obvious reversal in
the curvature of the distribution in the region between the leading edge and the hinge line.
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Figure 22.—Steady State Pressure Distribution Due to Deflection of 20% Chord
Control Surface

Waviness of the chordwise pressure distributions is more pronounced in figure 23 which
represents the steady state analysis results of the 6% chord control surface configuration of
figure 21. The analysis results of figure 23 were obtained using the maximum chordwise
number of downwash stations allowed by the program.

It appears that small length fluctuations are being caused by localized waviness in the
residual downwash distributions. Localized waviness in the residual downwash distribution
may cause the solution to be sensitive to the number of downwash stations used in the
analysis.
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Figure 23.—Steady State Pressure Distribution Due to Deflection of 6% Chord
Control Surface

The solution process is graphically displayed in figure 24 to indicate the technique used to
predict unsteady loadings caused by control surface motions. The procedure consists of:

1) obtaining a kinematic downwash distribution from the definition of the modal
displacements; 2) generating a discontinuous downwash distribution having discontinuities
that are identical to those in the kinematic distribution; 3) forming a residual distribution
by subtracting the generated discontinuous distribution from the kinematic distribution;

4) obtaining lifting surface pressures that satisfy the boundary conditions defined by the
residual downwash distribution; 5) defining the total pressure distribution over the surface
by summing the pressures required to generate the discontinuous downwash distribution

with the pressures that satisfy the boundary conditions defined by the residual downwash
distribution.

Smooth residual downwash that is free of localized waviness will provide solutions that are

relatively insensitive to the number and distribution of downwash stations on the lifting
surface.



Applied to Trailing Edge Control Surface Analysis

Figure 24.—Solution Process

Figure 25.—Residual Downwash Distribution Obtained for Analysis of 6% Chord

Control Surface Configuration
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Figure 25 represents the residual downwash distribution resulting from analysis of the 6%
chord control surface configuration. The large gradients present in both the chordwise and
spanwise directions are evidently so severe that it is difficult to obtain converged solutions
with the limited number of downwash stations available in the program.

The cause of the large gradients generated in the downwash distribution has been traced to
the chordwise pressure modification function that is used to satisfy the planform edge
boundary conditions. The modificaton function has the characteristics of forcing the
incremental pressures to approach zero in proportion to the square root of the distance from
the leading and trailing edges, as shown in figure 26. The modification function also
maintains a value of unity at the hinge line along with zero slope to ensure proper evaluation
of downwash discontinuities. The large chordwise curvatures that are generated in the
region aft of the hinge line, within analyses of small percent chord control surface
configurations, are responsible for the large gradient downwash distributions shown in

figure 25.

HL

E1(£)=ik5'xz)(2xc-xL-e) Zero slope
(Xc-xl)

Eq (€)= V(xg-£) (£-2xxy) |
(xg-x.)

-

1 1 ] 1 1 ] ]
0. 2 4 .6 .8 1.

x/c - chordwise coordinate

Figure 26.—Chordwise Pressure Modification Function
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The chordwise pressure modification function has been revised and has the characteristics
shown in figure 27.

The trailing edge boundary condition is satisfied by subtracting a function formed by the
product of the trailing edge pressure term multiplied by a chordwise term that approaches a
value of unity in proportion to the square root of the distance from the trailing edge.

Zero slope
) ng-xg)(ZXC-xl-g) N

E;(g) = (Xc'xl)

I ] 1 | ] {

0. 2 R .6 .8 1.
x/c - chordwise coordinate

Figure 27.— Revised Pressure Modification Function

Residual downwash distributions obtained using the revised modification function are
presented in figure 28 for the same analysis case that provided the results in figure 25. The
highly localized downwash variations of figure 25 that prevented solution convergence are
no longer present in figure 28.



Figure 28. —Residual Downwashes Obtained in Analysis of 6% Chord Control/
Surface Using the Revised Modification Function

Comparisons of the pressure distributions that result from using the two modification
functions in analysis of the small percent chord control surface configurations are shown in
figure 29 and figure 30.

3.

~————OQOriginal (fig 22)

Revised

x/c - chordwise coordinate

Figure 29.—Comparison of Pressures Obtained for Original and Revised Modification
Functions—20% Chord Control Surface
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AcC N
—————Original (fig 23) HL

1 ———————— Revised

x/c - chordwise coordinate

Figure 30.—Comparison of Pressures Obtained for Original and Revised Modification
Functions—6% Chord Control Surface

Pressure distributions resulting from applying the revised modification function are
smoothly varying and do not exhibit any reversal in curvature. The theoretical distributions
take on characteristics similar to those observed in experimental results.

Solution convergence has been evaluated to determine the minimum chordwise number of
downwash statons necessary to provide a converged solution for the analysis case of the 6%
chord control surface configuration. Results of the investigation indicate that converged
solutions may be achieved for this particular analysis case by using only five downwash
stations distributed over each downwash chord.

Previous analysis results using the original modification function indicate that convergence
cannot be attained even when the maximum number of eight chordwise downwash stations
is used in the analysis.

Consequently, significant reductions in computer costs can now be gained by taking
advantage of the smoother residual downwash distributions that result from this revision of
the chordwise pressure modification function.



RESULTS AND TIMING COMPARISONS

This section contains comparisons of theoretical and experimental data that result from
analyses and tests of four wing-control surface configurations. The experimental
configurations consist of: 1) a swept wing having a full span flap (reference 7); 2) a swept
wing having a partial span control surface (reference 8); 3) a swept wing having oscillating
side-by-side control surfaces (reference 6); 4) a highly swept delta wing having leading edge
and trailing edge control surfaces (references 9 and 10).

Theoretical pressure distributions are provided for a subsonic transport-type wing and
control surface configuration to demonstrate the use of higher order spanwise pressure terms
in analyses of highly swept configurations.

Computer timing results are provided for each of the above analysis cases. Computer usage
costs (given in CP seconds) were obtained for the original program reported in NASA
CR-2543 (reference 1) and also for the present prediction method. An estimation of the
reduction in computer usage cost is obtained by comparing the CP seconds required for the
two methods. All results were obtained on a CDC Cyber 175 computer having an FTN
compiler with the optimization option set to 2.

STEADY-STATE RESULTS FOR FULL-SPAN FLAP CONFIGURATION

The full-span flap configuration of reference 7, for which measured pressures were obtained
with various combinations of flap deflection and angle of attack, is shown in figure 31. The
flap deflection and wing angle of attack were maintained at constant values for each

experimental run.
\ (Dimensions in centimeters )

Location of pressure orifices

Hinge line

0.25 chord line

T
e N T
.~ 965 —.‘

Figure 31.—Experimental Full-Span Flap Configuration of NACA RM A9G13
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Experimental pressures were obtained along a streamwise section located at the 50%
semispan station. The longitudinal junction between wing and flap was sealed to prevent
leakage between the lower and upper surfaces at the hinge line.

The theoretical pressure distributions were obtained for modified boundary conditions that
account for local streamwise velocity variations due to airfoil thickness effects. A
comparison of the experimental and theoretical results is shown in figure 32.

1.6 — ,'

1.2 |

ACp

(real)

Hinge line

Experiment

| L | I \

.0 2 4 .6 .8 1.

x/c - chordwise coordinate

Figure 32.—Theoretical and Experimental Chordwise Pressure Distribution Obtained
for a Full-Span Flap with 6§ = 109, « =09, M =0.21, k =0

Since the sealed gap condition at the hinge line satisfies the theoretical assumptions
(reference 3) a suitable basis is provided for evaluating the accuracy of the theoretical
prediction. This comparison indicates that the experimental values are theoretically
predicted within very close tolerances over the entire length of the chord, even in the
vicinity of the hinge line.




Timing comparisons are shown in table 3 for two Mach number conditions. The results
indicate that there is a small increase in relative computer cost with increasing Mach number.

Table 3.—Computer Timing Results for Steady-State Analysis of Full-Span Contro/
Surface Configuration

NASA NASA
CR-2543 | CR-3009 | Ratio
(Sec.} {Sec.)
Total Execution Time 86.064 29.203 .3393
Main surface Total 5.842 2.301 .3939
C-Matrix Per DWP .243 .096
M=.21 Control surface | Total 34.512 9.353 | .2710
C-Matrix Per DWP 1.438 1390
Main surface Total 5.882 2.510 4267
C-Matrix Per DWP 245 105
M=.8 Control surface Total 34.513 9.671 .2802
C-Matrix Per DWP 1.438 403

STEADY-STATE RESULTS FOR A PARTIAL-SPAN FLAP CONFIGURATION

The configuration with partial-span control surface, shown in figure 33, is taken from
reference 8, representing a planform that was used in obtaining chordwise pressure
distributions due to steady flap deflection. Pressures were obtained on a chordwise section
located at the 46% semispan station. The hinge line gap was sealed, providing a suitable
basis for comparing theoretical and experimental resulfs.

The pressure comparison shown in figure 34 indicates that the experimental pressures are
accurately predicted by the theoretical technique over a chordwise strip forward of the hinge
line. The theoretical pressures on the control surface are only slightly larger than the
experimental values. Consequently, it appears that the lifts and hinge moments may be
predicted with reasonable accuracy for configurations having a sealed gap between wing and
control surface.



Location of pressure orifices

38.1

0.25 chord line

—— 61.0 ____,_l {Dimensions in centimeters)

Figure 33.—Experimental Partial-Span Control Surface Configuration of NACA RM L53C23

ACp

(real)

Theory

Hinge line

x/c - chordwise coordinate

Figure 34.—Theoretical and Experimental Pressure Distribution for a Partial-Span
Control Surface with § =100, =0, M =0.60, k =0
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Table 4 provides a measure of the computer costs involved for the two Mach number cases
for both the original and revised prediction technique.

Table 4.—Computer Timing Results for Steady-State Analysis of Partial-Span Control

Surface Configuration

NASA NASA
CR-2543 | CR-3009
(Sec.) {Sec.) Ratio
Total Execution Time 102.525 37.431 .3651
Main surface Total 9.071 3.857 4252
C-Matrix Per DWP .259 110
M=.6 Control surface Total 38.337 10.654 2770
C-Matrix Per DWP 1.095 .304
Main surface Total 8.978 3.974 4426
CMatrix | Per DWP 257 114
M=.8 Control surface | Total 37.935 | 10.876 | .2867
| CGMatrix | Per DWP 1.084 311

SIDE-BY-SIDE CONTROL SURFACE CONFIGURATION

N

Side
Inner | flap p&

|

250

Outer

™

Location of pressure orifices

edge gap

X

0.88

Hinge line

(Dimensions in meters)

Figure 35.—Side-by-Side Control Surface Configuration
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The side-by-side control surface configuration shown in figure 35 was used to obtain unsteady
pressures for various combinations of flap deflections. The model has small open gaps at the
hinge lines and side edges. Reference 6 provides no information on exact distances between
control surface side edges and adjacent pressure measuring stations. The spanwise locations

of experimental pressure chords were determined by measurement from the planform

drawing.

Figures 36 and 37 present comparisons of theoretical and experimental pressures along a
chord located near midspan of the oscillating control surface.

|
.05 - ,,
|

Hinge line

.04

ACp
(real) .03

O\-\ Experiment \

Pressure chord

.02

.01

.00 ! ! I !
.0 2 4 6 .8 1.

x/c - chordwise coordinate

Figure 36.—In-Phase Part of the Chordwise Pressures Due to Motions of Outer Flap for a
Pressure Chord Located on the Control Surface, M =0, k = .372
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Figure 37.—Qut-of-Phase Part of the Chordwise Pressures Due to Motions of Outer
Flap for a Pressure Chord Located on the Control Surface, M =0, k =.372

Figure 38 presents a comparison of pressures obtained at a station located far away from the
oscillating control surfuce where the pressure magnitudes become quite smail.

|
012 |
Pressure chord
ACp . .
(real) Hinge line
.008 \
‘Theory Experiment
.004
[e]
o
.000 1 ! | i ~
0 2 4 .6 .8 1.

x/c - chordwise coordinate

Figure 38.—In-Phase Part of Chordwise Pressures on a Chord Located at a Large
Distance from the Control Surface
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Table 5 presents timing comparisons indicating relative computer costs with six and nine
downwash collocation chords.

Table 5.—Computer Timing Results Obtained in Analysis of the Side-by-Side Control

Surface Configuration

NASA NASA
CR-2543 CR-3009
. (Sec.) (Sec.) Ratio
Total Execution Time 218.284 59.181 2711
6 Main surface Total 17.481 8.510 .4868
C-Matrix
Collocation Per DWP .583 .284
chords, Inboard flap Total 87.534 21.270 .2430
5 points C-Matrix Per DWP 2.918 709
per chord
Outboard flap Total 107.152 23.456 .2189
C-Matrix Per DWP 3.572 782
Total Execution Time 326.831 89.990 .2753
Main surface Total 26.421 15.376 .6820
9 C-Matrix Per DWP 587 342 B
Collocation
chords, Inboard flap Total 130.952 32.140 .2454
5 points C-Matrix Per DWP 2.910 714
per chord Outboard flap Total 162.351 35.579 2191
C-Matrix Per DWP 3.608 791

SWEPT DELTA WING WITH LEADING AND TRAILING EDGE CONTROLS

The configuration shown in figure 39 is taken from reference 9, wherein experimental
studies were reported on the use of active controls to suppress flutter. Steady state hinge
moments obtained in this investigation were published in reference 10.




1.763

Leading edge control

Trailing edge control

(Linear dimensions in meters}

Figure 39.—Experimental Delta Wing Configuration of NASA TM X-2909

Figure 40 provides a comparison between theoretical and experimental hinge moments
obtained for a leading edge and a trailing edge control surface deflection in steady flow.

Hinge-moment
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per degree
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Leading edge control
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per degree
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02
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.01 —

&
.00 | 1 1 | 1

.04/.4 6 8 1.0 1.2

Mach number

Figure 40.—Theoretical and Experimental Hinge-Moment Coefficients Obtained for
Leading Edge and Trailing Edge Control Surfaces in Steady Flow
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Table 6 provides a relative measure of the cost reductions that may now be achieved for
predicting unsteady loadings caused by motions of leading edge control surfaces.

‘Table 6.—Computer Usage Timing Comparisons Obtained for an Oscillating Leading Edge
Control Surface at M =.8, k=.5

NASA NASA
CR-2543 CR-3009 Ratio
(Sec.) (Sec.)

Total Execution Time 777.161 134.640 1732
Leading edge Total 495,574 60.356 1218
control surface
C-Matrix Per DWP 7.866 .958
Trailing edge Total 228.373 38.034 .1665
control surface
C-Matrix Per DWP 3.625 604
Main surface Total 43.182 26.921 6234
C-Matrix Per DWP 685 427

HIGH ASPECT RATIO TRANSPORT WING WITH CONTROLS

It should be noted that reasonable correlations obtained for the previous sample cases were
achieved for configurations having large span control surfaces oscillating at small reduced
frequencies. Numerical investigations conducted to evaluate solution convergence for small
span control surfaces oscillating at high k values indicate that the number of analysis
downwash chords needs to be increased in proportion to the k value and inversely
proportional to the span length of the control surface.

Numerical investigations conducted to evaluate sensitivity in analysis. of small span length
control surfaces were accomplished using the wing and control surface configuration shown
in figure 41. The 0.20 chord aileron has a 0.22 semispan and length and the 0.06 chord tab
has a length of 0.12 semispan.



.662

1.041

0.06 chord

tab 0.20 chord aileron

5156

849 ————|
992 —— 160

1115 ————— —t
1.174 ——— (Dimensions in meters)

Figure 41.—Analysis Configuration Used to Evaluate Solution Sensitivity of Small Span
Length Control Surface Configurations

Figure 42 presents a computer plot of the spanwise distribution of section lift due to aileron
deflection in steady flow for two distributions of downwash chords in the analysis. The
spanwise variation of the two lift distributions are almost identical. This indicates that
converged and cost effective analyses may be achieved by using only a small number of

downwash chords for steady flow analysis of small span control surfaces.

'30 ——————t . e — ko I —— - ¢
—o—| 9 downwash chords 4/
) DU SN S } — *! |
~b— [ 13 downwash chords / \
20 [USERNS NI NICRNENY PSUUSVENN S, _—— — —
Sectional f é
lift [V USRI IS R IR .

0 -
o—o— 40— H—-e/"ieﬁ

.00 .
.0 .2 4 .6
y - spanwise coordinate

Figure 42.—Spanwise Lift Variation Due to Aileron Deflection in Steady Flow for Two

Downwash Chord Distributions

[

.8 1.0 1.2
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Figure 43 presents the spanwise lift variation due to tab motions at k = 1.0, M = .8 for
analyses with nine and thirteen downwash chords. The results indicate that the solutions are
approaching convergence, but are not fully converged, even for the larger number of chords.

—&— 9 downwash chords

.04 T 0
l——— 13 downwash chords

.02 — — —

Sectional &)
lift % s\
(imag) . 4 q_m

-.02

i

-.06 1
.15 T T
—&— 9 downwash chords
10 —&— 13 downwash chords
Sectional
lift
(real)
.05
00 W:@z@ < g
-.05
.00 .20 40 .60 .80 1.00 1.20

y - spanwise coordinate

Figure 43.—Computer Plot of Spanwise Lift Variation Due to Tab Oscillation at
k=10, M=0.8



Increasing the value of k tends to degrade the convergence for small span control surfaces, as
shown in figure 44 for M = 0.8 and k = 2.0.

—&— g downwash chords

06 i e e N
—&— 13 downwash chords
.04 &
Sectional”
oot |\, 7
N N iy =
.00 E\S\ ( f - \ N .
-.02 %@\w a?
-.04 \ 2‘/ m‘a\ Lﬁ
-.06
.15 r y
—&— 9 downwash chords
ﬁ:;:tional 10 —&-— 13 downwash chords m
(real)
.05 .

-.05
.00 .20 .40 .60 .80 1.00 1.20

y - spanwise coordinate

Figure 44.—Computer Plot of Spanwise Lift Variation Due to Tab Oscillation at
k=20, M=0.8

Converged solutions may be obtained for small span control surface configurations, provided
that sufficient care is taken in selecting the proper number of downwash chords to satisfy
accuracy requirements.
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Table 7 shows the relative reduction in computer costs obtained for this small span control
surface analysis.

Table 7. —Computer Usage Timing Comparisons Obtained for Small Span Length Control/
Surface Analysis

NASA NASA
CR-2543 CR-3009
(Sec.) (Sec.) Ratio
Total Execution Time 171.052 48.436 .2832
Main surface Total 17.234 10.033 .6402
C-Matrix Per DWP 265 154
k=0 Aileron Total 74.304 15.160 2040
. C-Matrix Per DWP 1.143 233
13 collocation
chords, Tab Total 70.761 14.444 | 2041
5 points C-Matrix Per DWP 1.089 222
per chord
Total Execution Time 477.880 114,852 .2403
Main surface Total 39.720 30.598 .7703
C-Matrix Per DWP 611 471
k=1 Aileron Total 219.492 38.243 1742
C-Matrix Per DWP 3.377 588
Tab Total 208.891 36.683 .1756
C-Matrix Per DWP 3.214 564
Total Execution Time 119.180 32.736 2747
Main surface Total 11.477 5.683 .4865
C-Matrix Per DWP 255 124
k=0 Aileron Total 51.901 10.396 .2003
C-Matrix Per DWP 1.153 231
9 collocation
chords, Tab Total 49.644 9.886 1991
5 points C-Matrix Per DWP 1.103 .220
per chord
Total Execution Time 333.484 78.491 .2354
Main surface Total 26.651 18.391 .6901
C-Matrix Per DWP 592 409
k=1 Aileron Total 152.173 27.221 .1789
C-Matrix Per DWP 3.382 605
Tab Tota! 147.726 25.437 1722
C-Matrix Per DWP 3.283 565




CONCLUSIONS

Results of theoretical and numerical investigations to develop economical computing
procedures have been applied to an existing computer program that predicts unsteady
aerodynamic loadings caused by wing and control surface motions. Large reductions in
computing costs were achieved by removing the spanwise singularity of the downwash
integrand and evaluating its effect separately in closed form. Additional reductions were
obtained by modifying the incremental pressure term that accounts for downwash
singularities at control surface edges. Accuracy of theoretical predictions of unsteady
loading at high reduced frequencies is increased by applying new pressure expressions that
exactly satisfy the high frequency boundary conditions of an oscillating control surface.
Comparative results indicate that the revised procedures provide more accurate predictions
of unsteady loadings as well as reductions of 50 to 80 percent in computer usage costs.
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APPENDIX A

DEVELOPMENT OF PRESSURE EXPRESSIONS THAT SATISFY

THE BOUNDARY CONDITIONS OF A TRAILING EDGE
CONTROL SURFACE HAVING A SWEPT HINGE LINE

Pressure expressions are formulated such that the change in boundary conditions are

matched exactly around the edges of a trailing edge control surface. The analytical procedure
used to obtain these expressions originates with the asymptotic expansion process suggested
by Landahl in reference 3. Some of the symbols in this appendix are different from those in

the main text and are defined where introduced.

The formulation of these pressure expressions follows the general procedure given NASA

CR-2543. The present formulation differs from that of NASA CR-2543 in that the

transformation previously used to eliminate the first order derivative term contained within

the differential equation is no longer applied within this basic solution process.

The analysis coordinate system shown in figure 45 represents a segment of wing having a
swept hinge line trailing edge control surface where local coordinates x, y are described in

terms of £, 7, X, yg coordinates of figure 1. All coordinates are assumed to be
nondimensionalized with respect to some reference length “£.”

-7
Xe1 Vs
I Yy
A Wing
Wing /
Hin _

\ ) ge//',,e Y=N-VYg

Z Control \ = £
Z \ e

surface
¢ X

Figure 45.—Coordinate Definition for Analysis of Trailing Edge Controls

Local coordinates



The linearized boundary value problem is developed in terms of the pressure perturbation
coefficient Cp = PeikT where the pressure amplitude satisfies the differential equation of
flow

B2P 4+ P + P =-2ikM2?P + k2M2P =0 (AD
XX vy zz X

The motion of the system is defined as having the control surface oscillating about the hinge
line and the rest of the wing is maintained in a stationary position.

The displacement Z.g of the control surface is assumed to be simple harmonic and defined
as:

- _ ikt
Zc s = QH (x X, e
=7 elkr (A2)
cs
where 7 = % nondimensional time.
The boundary conditions resulting from this motion are then given as:
e -2t (x- i - - k2 (x- -
Pz- Z[Bé(x xc) + 21ikU (x xc) k(x xC)U(x xc)]U (y) (A3)

where the unit functions

0 x<xc
U(x—xc) = ll x>xc

0 y<0
U ()’) = ]. y>0

and 6( )is the Dirac delta function

The coordinates are scaled to remove the 2 factor from the differential equation by letting
X=fXg,Y =Yo,Z= 2y and using the relationship x - x. =x -y tan A

X-X, = X-ytanh
tanh

o~ Byo g

B(x0 - Y, tanAl)
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The boundary value problem then takes on the definition of:

2
P + P + P - 2ikM%, L 12M%p -
XgXy YoYo ZgZy B %,
1 .
P20 = --z[—éé(xﬂ—yo tanh,) + 21kU(xo—yo tanh,)

- k’B(xO—yotanAl)U(xo—yotanAl) :]U(yo) (A4)

The coordinates are now scaled by the local scaling factor € (¢ << 1) by letting

(X02Y0020) 519 = (EX2€Y00 8200, (A3)

and the amplitude of the pressure expression is expanded in a series in increasing powers of €

P=pP0 4+ egp! + €?P? + ... (A6)

where the superscripts on € are exponents, but the superscripts on P denote the order of the
P function and are not exponents.

The new coordinate definitions of equation (AS5) along with the expanded potential
expression of equation (A6) are inserted into boundary value problem definition of equation
(A4) to produce a series of new boundary value problems that are separated with respect to €.

The set of boundary value problems resulting from this process are given as follows:

po + po + po = 0 Zeroth
X X vy y zZ z
00 0”0 00 order, €°
0 = - 1 - =
Pz ZGH[ 8cS(x0 yo tanAl)] U(yo) on z 0 (A7)



2ikM?_ o

P! ! 1 = =g P
xx+Pyy+Pzz x
0 0 0° 0 0 0 0

1-— — -
on 48,1k U(xb yocanA,)U(yo) on z 0

2
P2, RI _4R2 = 13%5 P! ~i®>M%pO
00 00 00 %
2 2
p? = - -
2 26Hk B(x0 yot:anl\l)U(xo yotanAI)U(yo)
on zg= 0
2
P3  +p}  +pd = 2iKMT,2 0 g2y2p!
X X y z z B x
0 0 o 0
P =0 on z =0
0
ph +pn +p0 - 21kM2Pn—1 —k2M2pP-?
X Y.y z g x
0 0 0”0 0 0 0
P: =0 on z =0
0

First
order, ¢!

(A8)

Second
order, €2

(A9)

Third
order, €3

(A10)

N’th
order, €
(n 2 3)

n

(All)

It is to be noted that solutions of the boundary value problems of the third order or greater
do not contribute to a change in boundary conditions across the control surface boundaries
but only contribute nonsingular pressures to the overall expression. Thus, solutions are
required only for the boundary value problems defined equations (A7), (A8), and (A9).
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The solution of equation (A7) for the zeroth order boundary value problem in unscaled
coordinates is given by equation (A21) of NASA CR-2543 as:

P’(x,7,0)= "f__H 1n [\/ x2+8%y? - (B%y+xtanh, )]
B

w8
where -
X = -x
g cq
y = nN-VYg unscaled
tanh coordinates (Al12)
tanA, = 8
B = V B2+tan?A _J
now with scaled coordinates x = x/Be; y = yi/e; z = zle
the expression takes on the form:
0 O 24y2 A A
= A + - i + Al3
P (xo,yo,O) - ln[ x *y (x051n 1y cos o (A13)

It is now useful to make a rigid body rotation of coordinates defined by the following
sketch:

— Y ¥ = x cosh -y sin/&1
0 1 Q
Ay
y = x sinA +y cosA (A14)
- 0 1 0 1
y
z = z
0
X X,
then po~ - 2B 14 [r‘?]

where r= \[x2+y2 = Viz+?2
o " a



The first order boundary value problem (equation (A8)) is restated here for convenience as:

- 21kM? 3P (x,,¥,.,%,)
vZP’. (x.’y.’z.) _é— —a—;. [ ] Q’ 0

(A15)

3_P1 (x.,y.,z.)' —49HikU(x'-—y.tanAl)U(y')
oz
.

The x, derivative expressed in rotated coordinates is

tanA

where tanA, = and B = VB’ + tan?A

The boundary value problem of equation (A15) described in rotated coordinates is given as

251 (= v o _Zikﬁz 3 porx. v 3y 421ikM?tand 9 pY(%,¥,%)
ver' (x,7,2) —B— 5 (x,5,2) +—_—B§ 3y

(% 5.9 - —

3B° (x,7, z) =-40851kU (X)U(F-% tamd,)

Az

The above boundary value problem is then decomposed into three separate parts for ease of
solution. The complete solution for P! (X,¥,Z) is obtained by summing the solutions of the

three parts defined as ) _ )
v2pli(z, 5, 7)- 2LKM® 2R1(K,§,7)
B X
ap 11 g (A16)
- =0
az —

/

2ikMZtanA ap°(i,y,z)1
BB oy

> (A17)
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VzP 13( X,¥,Z) =0
(A18)

3P 13
ﬁ _ = —49HikU(i)U(y—it8nﬂ.l)

z =0

Solution of equation (A18) may be obtained by a straightforward application of Green’s
theorem and the solutions of equations (A16) and (A17) are obtained by applying flux
theorem to these Poisson equations in the manner discussed by Hewitt in reference 5.

An example of the process used to obtain a solution of Poisson’s equation is given as follows:

Consider equation (A16) rewritten as:

(A19)
pL =0
Zlz=0

From equation (A13), the P solution of the zeroth order boundary value problem is given
in rotated coordinates as:

B'=~ -2 log(z-7) AQ20)

where

H|
I
e
N
+
<t
N
+
Ny
N

<
I

x sinA + y cosA
0 1 0

The first step is to take a derivative with respect to ¥

o _ 6 1
57 T (%)



then a derivative with respect to X is denoted as:

. 2
vipl . 2ikM7 0y 3 (1) (A21)

From an extension of Green’s theorem, the solution of a Poisson equation is given as:

1 _ Ou z— dxdyd
Py o= g 2it oo ax( )

= =2 52 =52
r, = {xl + ¥, + zy

<

where

Q
%
—
o=
-
I
i
@l
% |
—~

1 Oy 3J,
P = — (2ikM?) — A22

y TFBZ( ) Ix ( )
where

5 lfffl d%,dy,dZ,

T 74w T =
1 1 R,
\
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and may be interpreted as the potential at the point™, ¥, Z due to a distribution of sources
of strength 1/r; . The potential J, is spherically symmetrical with respect to the origin,
and the value of J; may be obtained by applying Gauss’s flux theorem to a sphere of radius
r that yields the relationship: :

J, (x)= —;— + constant (A23)

Inserting equation (A23) into equation (A22) results in:

1 6
Ps = B M2
wg2

SET

and the final solution obtained for P! is obtained by integrating with respect to y to yield:

0
P =27 1kM? Elog(F+) (A24)

The solutions for the remaining components of the first order problem may be obtained in a
similar manner and are summarized as follows:

plapllypl2ypls \
Oy ikM2
prio JH IKMT g g (2 47)
m EZ
o, % ikMZeang
pize B I ererre T (A25)

gB?

94
p!i= —(-2ik) xlog(E-¥)

8u
+ —_"—(—Zik) yolog(xr -x,)




“In like manner, the second order boundary value problem of equation (A9) is subdivided
into components that are readily solved and the sum of the solutions will satisfy the second
order boundary value problem of equation (A9).

The second order problem is restated here for convenience

v2p? . g_:L_lBE}iz P; ~k2M2p?
. ’ (A26)
g—lz’o = ZOszB(x.’YotanAl)U(xo"yotanAI)U(yo)

z=0

0

P° and P! are expressed in terms of the rigid rota.t'ed coordinates X and ¥ in equation (A20)
and equation (A25), respectively. ’

The boundary value problem can be expressed in terms of theX,¥,Z coordinates by
formulating the x derivative in the rigid rotated coordinate system as

tanA

]
3x+ g

"
m|lm

SRV
|
[ 1
U]
<l

and applying the relationship between the Laplacians of rigid rotated coordinate systems
given as

V2P (x,,¥42,) SV P(x,7,2)

The second order problem described in the rigid rotated coordinate system,X,V,Z is then
given as

V2p2(%,5,z)= 21kM?3P(%,5,z) ,21kM’tanAdP(X,¥,%)

cTx” tan. -k2M2p0
B 9% BB 9y

V]
la-]

2(2,57.2)1_ 20,k?B % U(X)U(§-% tanh,)

Q
NI

Z =0

The boundary value problem is then decomposed into four separate parts for ease of solution.
The solution P? (x, v, z) is obtained by summing P2!, P22, P23 and P?* that are solution
results of the four separate boundary value problems defined as
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21kM? 3PY(%, 7, )

vip2l (%,¥,2)=

8 x
(A27)
21
P =0
¥ lz=0
2 /= = =
72222 (x,7,7) = 22K pany 2B (2,9, %)
(A28)
PZ; =0
z=0
v2p23(%,5,%z) =-k*M?P° (X, ¥, %)
(A29)
P23 =0
Z |z=0
VZP2*(x,,5,,2,) =0
24 _ 2 _ , _ (A30)
on o = ZGHk B(x° yotan./\l)U(x0 yotanAl)U(yo)
0

Solutions of equations (A27) and (A28) are obtained for these Poisson equations in the
manner previously described after the appropriate differentiation of equation (A25) has
been accomplished. Also, equation (A29) may be solved in the manner previously described
for this Poisson equation. The solution of equation (A30) is accomplished by a straight-
forward application of Green’s theorem.

The solution of the second order boundary value problem is the sum of the solutions of the
above boundary value problems, i.e.

P2 = P21 +P22 +P23 +P24




Thus, the final expression describing the pressure loadings that will satisfy the change in
boundary conditions around the boundaries of a trailing edge control surface may be given
in unscaled coordinates of figure 45 as follows:

P(x,y,0)= P%(x,y,0)+ €P¥(x,y,0) + €*P?(x,y,0)

0 2 2 M2
P(x,y,0= —n'ﬂ[["*&'*' ZkBH(l +';- %15)(1 + 3 = 72 > (x - ytanh) ]
1 M2 2
- ____k<1 + 3 %)(X_Ytanj\)] 1°3[VXTBZ_Y_2 _ (B%y +ExtanA)]
[ (x-ytanA) - 12k]ylog[Vx2+82y2 - x]
[%] tanh yzlog[m - x] (A31)

[N
[

=‘|m =‘|m ™I

Equation (A31) is the complete expression for the pressure loadings required to satisfy the
boundary conditions on a trailing edge oscillating control surface that is no longer restricted
by frequency limitations. This equation needs to have special modification functions

applied to it such that planform edge boundary conditions are satisfied. This is accomplished
by using the E, and “H” functions described in NASA CR-2543.
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APPENDIX B

DEVELOPMENT OF PRESSURE DISTRIBUTIONS THAT SATISFY
THE BOUNDARY CONDITIONS ON SWEPT WING HAVING A
LEADING EDGE CONTROL SURFACE

Pressure distributions are formulated in this section such that the boundary conditions
over an oscillating wing control surface configuration are satisfied for the general reduced
frequency case. Some of the symbols used here differ from those of the main text and are
defined where introduced.

The formulation of these pressure expressions follow the general procedure given in NASA
CR-2543. The fundamental difference between the derivations made in this section and
that of NASA CR-2543 is that the “x” derivative is retained in the linearized differential
equation of flow instead of transforming the differential equation into canonical form as
indicated by equation (B7) of NASA CR-2543.

The procedure used to transform the differential equation into canonical form provided a
relatively simple set of boundary value problems that could be solved with the aid of Fourier
transforms. However, the transformation of the differential equation also requires a
transformation of the associated boundary conditions. The transformed boundary
conditions then contain an exponential function exp ( ikM? (x - XQS)) which was
expanded and approximated by retaining only a few terms of the series within the original
development of NASA CR-2543. The effect of retaining only a few terms in the expanded
exponential boundary condition limits the applicable range of reduced frequencies to
relatively small values for analysis of high Mach number cases. The pressure expressions have
been reformulated such that there is no longer a frequency limitation on the high Mach
number analysis cases.

The analysis coordinate system shown in figure 46 represents a segment of a swept wing
leading edge that has a control surface that oscillates about a hinge line located aft of the
leading edge. All coordinates are assumed to be nondimensionalized with respect to some
reference length “€.”
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Figure 46.—Analysis Coordinate System

Solutions of the mixed boundary value problem are obtained from the linearized
differential equation of flow given as

32¢ii + ¢yy +9,. - 2ikM2¢2 + k2M2%p =0 (B1)

The motion of the system is defined as having the control surface oscillating about the hinge
line and the rest of the wing is maintained in a stationary position.

The displacement Z.¢ of the control surface is assumed to be simple harmonic and defined
as

z,_ =6, (%-%_)e "T (B2)

= —\% (nondimensional time)
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The mixed boundary conditions are then defined as

3 9Z.4 )
= +1ik2Z >
§%|Z=0 ox - 70 Aft of
Leading Edge
L] - B3
3z lz=0 0 y<0 (B3)
$=0 Ahead of Leading Edge J

The “‘on-wing” boundary conditions may be combined using a unit function definition in

[ ]

y

1 y>0
U(y)= 0 y<0

The resulting boundary value problem is then defined as

2 - . 2 2,2 - \
B ¢ii-+¢yy + ¢zz 21kM ¢i + k*M%¢ 0
¢Z=SH[(l—ik§cs)+ikZ]U(y) X>ytanh (B4)
on z=0
$=0 on z=0 X<ytanh

A transformation or coordinate scaling is made in order to simplify the differential equation
by setting

1]

~<
N
1]
N

X°=X/B; y

This coordinate scaling results in a transformation of the leading edge definition as given by

]
kon]
n

tanh
yo an

»
]

yotanA/B

tanh
yO 1
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The new definition of the mixed boundary value problem is then described as

2ikm? 2,2 )
+ - x, + kM = (0
I - 21em 0 x, ¢
= (A+ >y tanA =
¢z° ( \JXO)U(Yo) x >y ,tand = on z 0 B5)
< =
$=0 xo yotanA1 on z, 0
A= SH(I—ikxo); v = OH(ikB) )

In order to study the problem in the vicinity of the leading edge corner, all coordinates are
stretched such that

(xo,yo,zo)old—-— (exo,syo, ezo)new

The potential function is then expanded in a series given as
¢ = ¢° +elpl + PP+ o - e

where the superscripts on € are exponents, but the superscripts on ¢ denote the order of the
¢ function and are not exponents.

The expanded potential function is then inserted into the differential equation and
associated boundary conditions of equation (B5). A series of new boundary value problems
are obtained by collecting terms with respect to the powers of €. The resulting set of
boundary value problems are less complicated and may be solved more readily than
attempting to solve the original boundary value problem of equation (BS).
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The set of simplified boundary value problems resulting from the asymptotic expansion
process are given as follows:

V24%= 0 ) Zeroth
. order, €
) , = 0 on z=0; Xg>y,tand, ,
0
%= 0 on z=0; x0<y°tanA1 ) (B6)
21kM? (0 ) First
24l ——— ¢
Ve B8 X, order, €!
1 =0; tani
¢zo A U(yo) on 2z Xy>Yy,tand, r
- ¢ on z=0; X, <y, tanh (B7)
¢ 0 0 1 )
y2¢2= 2ikM2¢,‘{ -k2M2¢° ) Second
B8 0 order, €2
¢§ = \)xoU(yo) on z=0; x“>yotan/\1 }
$2= 0 " omn z=0; X <Y, tanh, ) (B8)
. 2 A
v2gl= 21KMTe2  _p2y2gl Third
B 0 3
order, €
¢3 = 0 on Z=0; X0>yotanA1
: r
$3= 0 on z=0; X <y tanh, (B9)
2 _ \
y2eha ZLKMZ (071 zy24n2 N’th
B Xo n
order, €
n _ =0: 23
¢z. 0 on z=0; X, >y tanh, o (n 2 3)
%= 0 on z=0; X <y tanh, ) (B10)




The zeroth order boundary value problem may be solved in terms of an unknown
coefficient multiplier that depends on the result of the global integration. However, the
coefficient multiplier cannot be evaluated as a function of local boundary conditions only.
Also, the boundary conditions across the side edge indicate that the resulting solution will
be regular and not contribute to evaluating the finite change in boundary conditions.
Consequently, the zeroth order solution will be omitted from this initial solution process.
However, its effect will ultimately be included within the complete solution during the
global integration that is performed at the end of the solution process which evaluates the
final loadings using the generated residual downwashes as boundary conditions.

It should be noted that the third and higher order boundary value problems do not define

a change in boundary conditions across the side edge of the control surface. As a result, the
solutions of these problems provide continuous downwash distributions across the wing
control surface boundaries which result in additional smoothness within the residual
downwash sheets. However, experience has shown that only the boundary value problems
that contain a discontinuity across the side edges in the boundary condition definition need
to be considered in order to obtain reasonably smooth downwash sheets provided that not
too high values of reduced frequency are applied within the analysis. Consequently, the
third and subsequent boundary value problems are omitted from the solution process.

Thus, the critical boundary value problems to be solved are the first and second order
problems as given by equations (B7) and (B8) with the ¢°® and ¢‘)’(O terms set to zero. The
sum of the solutions of these boundary value problems will then provide a means to exactly
match the change in boundary conditions across the side edges of a leading edge control
surface without having a frequency limitation that was previously implied within the
development of NASA CR-2543.

The critical boundary value problems to be solved are then defined as

Vz¢1 = 0 1 First
order
1 - = .

¢z. AU(y,) on z=0; X, >Y, tanh X

¢1- 0 on z=03 X, <Y, tanAl J (Bl1)
2
Vchz' 2ikM ¢1 ) Second
B X,

order

¢:.- VX, U(y,) on z=0; Xy >y, tanh, &

2, =03

) 0 on z=0; X, <Y, tanAl ) (B12)
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Solution of the first order boundary value problem has been obtained in NASA CR-2543 and
its contribution to the pressure coefficient will be included at the end of this section.

The second order boundary value problem of equation (B8) has the form of a Poisson
equation that complicates the solution process if it is retained in its present form. However,
the differenitial equation may be changed into a more amenable form by applying a
transformation to the definition of ¢2 such that

ikM

$2 = X0 + (B13)

where the form of ¢ is to be determined. That is, ¢? is defined as being a linear combination
of ¢! and a new function ¢ as is implied from the form of the differential equation of
equation (B8). The conditions imposed on ¢? by ¢! are known from the solution of the
first order boundary value problem and it only remains to determine the conditions on ¢
such that the linear combination provides a valid solution of the second order boundary

value problem.

The coordinate subscripts are removed from the following discussion and will be replaced at
the end of the derivation.

Restating the transformation

then
V2p2a E%?}Vz(x¢l) + v

and

2
VZ(X¢1)- f;a(x¢l) + <§_2+3 ‘)¢l

fl
A
Ed
e—
+
-6-
N
+
F
Q)o)‘
% N
M)
+
|
J %
N
©-

32 2 2
2¢i+’<(w T +§—7> 6!

2¢; + xV%¢p!

Since v2¢! = 0 from the definition of the first order boundary value problem, it follows that

. 2 —
V2¢2=211§M ¢; + Vz¢



From the definition of the boundary condition imposed on ¢? within equation (B12), it
follows that

2 _ 2 -
¢;=i%ﬁ x¢l+ 3, _g%y xAU(y) + ¢, =vxU(y)

on z=0; x>ytani;
and

2 — —_
p2=28 xo? + 7 =3

0 for x<ytanh,

Therefore, the conditions imposed on ¢ are then defined as

V2$=0 )

_ 2

7,=v-H0xu(y)  on 2=0; x>ytanh, - (B14)
$=0 x<ytanh, )

Thus, the solution of the second order boundary value problem of equation (B12) is given as

MZ

i

i x¢ ! 4 the solution of equation (B14)

$2=

m‘

It should be noted that solutions of ¢! and ¢ (of equation (B14)) have been obtained in
NASA CR-2543. However, the pressure expressions resulting from the above are different
from the expressions of NASA CR-2543 due to the transformation used in obtaining ¢2.

The new definition of the pressure loading functions are formulated using the expanded
form of the potential function

p=copl+e?¢?
(B15)
=e¢‘+sz(i—lé—nzxo¢‘+$ )

By definition, the loading functions written in terms of the pressure coefficients are given in
unscaled coordinates as

Cp(R,7,0)=-2(¢-+ 1k¢) (B16)
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Inserting equation (B15) into equation (B16) and performing the indicated operations
results in the expression of the pressure coefficient that is valid for the general reduced

frequency case

. 2 . 2442
Cp(%,¥,0)=-2 [(l+1§-§1 -£>€¢1_+<1_k_l_cé_ii E)eq) 1 ]

X \p? (B17)
—2[825}_{+ik€23]
From equation (B65) of NASA CR-2543, e¢! is given in unscaled coordinates as
. : v, +v
ol 1 oo iy [V,
eo T Im[(iB+tanA) VoVa ZlOg[Vo—Vl ] } (B18)
where
V- VE+iBYy
Vl= \ X-ytand
The x derivative of ¢! is obtained by noting that
T, 1. W12 1°g<—-‘-'°+vl L
ox  2v,’ Eh 4 2vy ’ 93X ¥V, V.V,
y-(Vﬁ—?i)/(iB+tanA) with ¥V, being Real.
Thus
122 a2 5 ) iy L
54’,—{' m [(iB+tanA) (271"'2\7) 2 Vv,
or (B19)
1 -2A =
£ = ——— Im] (B+itanAh) ‘/x+1By
X wB?y, [
where

§2=82+tan2A



The first part of the pressure coefficient of equation (B17) (that part involving ¢l) can then
be written as

C (X,y,0)==-2 {(1+ikM ‘)e¢_+( ‘)eq)‘ ]

cl(z,y,0)=-2 [(1+ikM ')(u_ZAZ)I“‘[(B’“““A)V X+1By ] (B20)

v+v

ik k2M2_)Im[('2")v 7 +_Z_log[ - vl]]}

g2 L

It can be shown that

@ [ erecannv,) - BSBROOETGETx wbgmb VR h T
v +'\7 vV ,+V

I-m [i l°g<Vo‘V >] Re [lc’g(vo—vl)]

e (133550 | -

ylog [sz+szy2+<z-ytanm+\/7v§-ytanA Wetreyios ]
W*‘(i-)'tanl\)-v;m {V§2+82y2+§

Inserting the above into equation (B20) and collecting terms results in a partial expression
of the pressure coefficient of equation (B17) given as

cproa 128 )bt 1) e

<] <

or

2 2,2
[—2—2 |:(1+ikM ) Yx- ytan7§+< th: i> /i-ytan!\]

[Bsgn(y) //x2+B82y2-% +tanh y/i2+62y2+i} (B21)

+(ik 30 > y log [*xi“rﬁ y2+(%-ytanh)+ /7 /E-ytank Wx>+B2y> +X

Y&2+82y2+(RX-ytanh)+ /7 y/R-ytanA//E2+B2Zy 2 +%

J
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The second part of the pressure coefficient defined by equation (B17) is obtained by
modifying equation (B68) of NASA CR-2543 by replacing 5 by ik in the out-of-phase part
of the pressure coefficient. Thus, the second part of the pressure coefficient is given as

c, [49 - 21 .a2
2 (g ) A 2xtanA-(3tan®A+8%)y\ =
CP(X,Y, 0) p [Béz [tanA+ik< A g,

4‘_’1 ik-2 | =
+ E—zSgn(y)[l+7vl Us

2 = -

4 . 20, ¥

+ ik= Sgn(y)tanh ”—Lil
2 [?—\7 ]

1

- =2 _ o=
e () o
T v, -2% g,

where
X = £- Xcg y = n-VYs
\‘rf = %X - ytanl B2 = B2 + tan?A
s 2
TZ = -)-<Z+ 82y2 CZ =<\) _ llgM A>
—z_Vi2+82y + X s
u; = 2 v = 16Hk8
o241 RZ2w _ =
ﬁg = x_+%u A = eH(l_ikic)

The sum of equations (B21) and (B22) form the complete expression of the pressure
coefficient that does not contain any frequency limitations. These expressions must be
modified by a suitable modification function such that the boundary conditions are satisfied
along the edges of the planform boundary. The modification functions that satisfy these

constraints are described in NASA CR-2543.
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